Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundInteraction analysis via movement in space and time contributes to understanding social relationships among individuals and their dynamics in ecological systems. While there is an exciting growth in research in computational methods for interaction analysis using movement data, there remain challenges regarding reproducibility and replicability of the existing approaches. The current movement interaction analysis tools are often less accessible or tested for broader use in ecological research. To address these challenges, this paper presents ORTEGA, an Object-oRiented TimE-Geographic Analytical tool, as an open-source Python package for analyzing potential interactions between pairs of moving entities based on the observation of their movement. ORTEGA is developed based on one of the newly emerged time-geographic approaches for quantifying space-time interaction patterns among animals. A case study is presented to demonstrate and evaluate the functionalities of ORTEGA in tracing dynamic interaction patterns in animal movement data. Besides making the analytical code and data freely available to the community, the developed package also offers an extension of the existing theoretical development of ORTEGA for incorporating a context-aware ability to inform interaction analysis. ORTEGA contributes two significant capabilities: (1) the functions to identify potential interactions (e.g., encounters, concurrent interactions, delayed interactions) from movement data of two or more entities using a time-geographic-based approach; and (2) the capacity to compute attributes of potential interaction events including start time, end time, interaction duration, and difference in movement parameters such as speed and moving direction, and also contextualize the identified potential interaction events.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Movement is manifested through a series of patterns at multiple spatial and temporal scales. Movement data today are becoming available at increasingly fine-grained temporal granularity. These observations often represent multiple behavioral modes and complex patterns along the movement path. However, the relationships between the observation scale of movement data and the analysis scales at which movement patterns are captured remain understudied. This article aims at investigating the role of temporal scale in movement data analytics. It takes up an important question of “how do decisions surrounding the scale of movement data and analyses impact our inferences about movement patterns?” Through a set of computational experiments in the context of human movement, we take a systematic look at the impact of varying temporal scales on common movement analytics techniques including trajectory analytics to calculate movement parameters (e.g., speed, path tortuosity), estimation of individual space usage, and interactions analysis to detect potential contacts between multiple mobile individuals.more » « less
An official website of the United States government
